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Basic tools:
parameterization of all stabilizing controllers
linear equations for polynomials (Diophantine equations)

Motivation, historical notes

Standard applications:
asymptotic properties, pole placement, deadbeat control, 
H2 optimal control, l1 optimal control, robust control

Advanced applications:
stabilization subject to input constraints,
input and output shaping, fixed-order controller design
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Given a plant S,
determine a controller R so that
(1) the control system is stable, either Res < 0 or |z| < 1
(2) additional specifications are met.

d
r e            u       v                   y

It is logical to stabilize first,
then meet the additional specifications.

Then one needs to determine all stabilizing controllers.

R S–
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Let  S = b/a  and  R = q/p , coprime polynomial fractions.
Closed loop sensitivity

and complementary sensitivity 

In a stable system,  X and  Y are stable.
However, X and Y cannot be arbitrary since  HS + HC = 1.
Hence
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All controllers that stabilize the plant S = b/a
are given by R = Y/X ,
where  X, Y is a stable rational solution pair of

All solution pairs can be expressed in parametric form as

where  x, y are polynomials such that  ax + by = 1
and W is a free stable rational parameter.

This is a fundamental result,
called the Youla-Kučera parameterization.
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Plant

Equation

A solution x = 0, y = 1 yields the stabilizing controllers

For example,
W = 1/(s+1) yields a proportional controller R = 1.

Taking W = 1 results in R(s) = 1 – s;
this controller is stabilizing but it is not proper 
and the feedback system has a pole at s = ∞. 
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The parameterization applies to discrete-time systems as well.

Continuous-time systems can give rise to transfer functions 
that are not proper.

In the case of discrete-time systems, however, 
additional constraints have to be imposed: 
the transfer functions S and R are to be proper
(so that the plant and the controller are causal systems) 
and one of them is to be strictly proper 
(so that the closed loop system is causal). 

The chronology of samples in control systems
is usually taken in such a way that S is strictly proper. 
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Plant 

Write

Equation

A solution x = 1, y = 1 yields the stabilizing controllers

for any proper stable rational W.
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Jury 1959               deadbeat, SISO plant
Volgin 1962            pole placement
Åström 1970           minimum variance, minimum phase plant
Peterka 1972          minimum variance
Kučera 1973           stabilization, parameterization, SISO plant

Kučera 1975           stabilization, parameterization
Youla et al 1976      H2 control, stabilization, parameterization
Kučera 1979          polynomial equation approach
Desoer et al 1980 proper stable fractions
Nett et al 1984         state space formulas

It took decades to appreciate the importance of the result
and come up with applications.
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There are as many stabilizing controllers for a given plant 
as stable rational free parameters W.

The set of stabilizing controllers for a given plant
contains controllers of arbitrarily high order.

The parameter W in turn parameterizes 
all resulting stable closed-loop transfer functions
and the parameterization is linear in W,

while it is nonlinear in R. 
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Reference tracking:
output y follows reference r (error e goes to zero) 

asymptotically.
In terms of Laplace transforms, 
e(s) = HS(s) r(s) is to be a stable rational function.

Disturbance attenuation:
effect of disturbance d on output y decreases asymptotically.
In terms of Laplace transforms, 
y(s) = SHS(s)d(s) is to be a stable rational function.

This is to be achieved by a selection of the parameter W.



Plant

Stabilizing controllers

for any stable rational W ≠ 0.
Achievable sensitivity transfer functions are HS = (s + 1)W.

To track a step reference, r(s) = 1/s, we have e(s) = (s + 1)W/s,
so we must take W = sW1 for any stable rational W1 ≠ 0. 
To attenuate a sinusoidal disturbance, d(s) = s/(s2 + ω2), 
we constrain the parameter as W = (s2 + ω2)W2
for any stable rational W2 ≠ 0. 
This demonstrates the internal model principle.
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Plant  S = b/a
Stabilizing controller  R = Y/X,
where X = x + bW,  Y = y – aW  and ax + by = 1.

Let  W = w/d,  where  d is a Hurwitz polynomial. 
Then

Pole placement equation

The polynomial d specifies the closed-loop poles 
while w represents the remaining degrees of freedom.
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Plant

Stabilizing controllers
, W ≠ 0 stable rational

Let the desired pole locations be given by d(s) = s2 + 2s +1.
Put W = w/d.
Then

and for R to have order 1, take w(s) = s + ω for any real ω.
Otherwise poles at s = ∞ as well.
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A discrete-time control problem.

Plant  S = b/a
Find a stabilizing controller  R = Y/X
such that all four closed- loop transfer functions 

HS = a (x+ bW),  SHS = b(x+ bW), 
HC = b(y – aW ), S–1HC = a(y – aW ) 

are FIR (vanish in a finite/ shortest time). 
This occurs iff W is a polynomial in  z-1.

Special case of pole placement: all poles at z = 0.
Shortest transient time iff
x, y is the least-degree solution pair of  ax + by = 1.



Plant

Stabilizing controllers

Then 
HS = 1 – z–1 + z–1(1 – z–1)W,    SHS = z–1 + z–2W, 
HC = z–1 – z–1(1 – z–1)W,    S–1HC = 1 – z–1 – (1 – z–1)2W

are all polynomials in z–1 iff W is a polynomial in z–1.

The shortest impulse responses are achieved for W = 0.
The transients will vanish in one step.
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Plant  S = b/a
Find a stabilizing controller  R = Y/X
such that, say, HC = b(y – aW) has a least H2 norm.

Let αβ be a polynomial 
defined by keeping the stable (in Res < 0) zeros of ab
while replacing the unstable (in Res ≥ 0) ones
with their negative values.
In fact, α is the spectral factor of  a(s)a(–s),  β is that of b(s)b(–s).
Then ab/αβ is all-pass and  
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Consider the decomposition                     

with r polynomial and q/a strictly proper.
With this decomposition,

because q/a and r – αWβ are orthogonal 
and thus the cross-terms contribute nothing to the norm. 
The last expression is a complete square 
whose first term is independent of W.
Hence the minimum is unique and achieved for W = r/αβ.
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The H2 optimal control is a special case of pole placement.
Indeed,

and

The optimal closed-loop poles are given by αβ.

The pole placement equation has more than one solution.
Which one is optimal? The one with q/a strictly proper.
It is the solution pair p, q with q having a least degree.
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Plant

Stabilizing controllers

, W ≠ 0 stable rational

The complementary sensitivity function to be minimized is

Now α = s +1, β = 1 
and the polynomial part of αyβ/a = (s+1)/(s –1) is r = 1. 
Thus HC attains minimum H2 norm for 

and the corresponding optimal controller is R(s) = 2.
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Alternatively, one can solve the Diophantine equation

for the solution pair p, q such that q/(s –1) is strictly proper.
This yields the least-degree solution pair with respect to q,
namely p = 1, q = 2.

The optimal controller is R(s) = q/p = 2.

In general, it is simpler to solve the polynomial equation 
than performing calculations with rational functions.

1+=+)1_( sqps
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The H2 norm minimization is appropriate 
for systems excited by finite energy signals. 
When the exogenous signals persist, 
a more relevant norm to measure system performance 
is the L1 norm (for continuous-time systems) 
or the l1 norm (for discrete-time systems). 
The discrete-time case is much easier.

Plant  S = b/a
Find a stabilizing controller  R = Y/X
such that, say, HS = a(x + bW) has a least l1 norm.
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The optimal sensitivity function HS = a(x + bW)
is not unique but it has a FIR property.
Perform stable-unstable factorizations a = a+a– and b = b+b–, 
where a– and b– absorb all the zeros of a and b, respectively, 
in the open unit disc | z -1| < 1. 

Then HS is a polynomial in z -1 iff W has the form

where w is a free polynomial.

Indeed,  HS = ax + a – b – w
and the l1-norm minimization of HS is equivalent 
to a finite linear program for the coefficients of w.
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Plant

Equation

A solution  x = 1 – 0.5z -1,  y = – 3 + 2z -1

yields the set of stabilizing controllers

for any proper and stable rational parameter W.
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The set of achievable sensitivity functions is

and those which are polynomials in z -1 are

where w is the numerator polynomial in z -1 of
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An upper bound for the degree of w is 2. 
The linear program:

minimize  t = r1 + r2 + r3 + r4 + r5
subject to  – ri ≤ hi ≤ ri and  ri ≥ 0,  i = 1, 2, ... , 5

where

then returns w0 = 1.5, w1 = 0, w2 = 0 so that
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The optimal controller is

the corresponding optimal sensitivity function is

It is to be noted that R is not a deadbeat controller 
because SHS is not a polynomial. 
Indeed, only polynomial parameters W
result in deadbeat controllers.
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The H∞ norm measures 
the transfer of energy through the system.

Plant  S = b/a
Find a stabilizing controller  R = Y/X
such that, say, SHS = b(x + bW) has a least H∞ norm.

This is a disturbance attenuation problem
for             (continuous time) or           (discrete time).

The discrete-time case has a lot cleaner solution
than the continuous-time one.
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The set of proper and stable real rational functions
equipped with inner product

where C is the unit circle oriented counterclockwise,
forms a linear space denoted by H2.

The problem of minimizing

where                                                        is to find
the closest point to f in the subspace gH2 ,
where the distances are measured using the H∞ norm. 
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Associated with each proper and stable rational function F
is a linear operator on H2 denoted by TF .

Let N denote the orthogonal complement of  in H2 and
let      denote the orthogonal projection mapping H2 onto N.

Then              is the same for all h and in fact equals         .
Thus,

If h∞ attains this minimum
and           is a function such that
then the optimal sensitivity is                                                 
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Plant

Equation

A solution  x = 1 – z -1,  y = 1
yields the set of stabilizing controllers

for any proper and stable rational parameter W.
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The task is to minimize the H∞ norm of

Thus

Since g has two zeros, the subspace N has dimension 2 
and an orthonormal basis for N is given by 1, z -1.
The matrix representation A of         with respect to this basis
is
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Now                        , the largest singular value of A,
and q(z),                    are respectively given,
with respect to the basis of N, by p, Ap,
where p is the eigenvector of ATA corresponding to .

In this case,                  and
It follows that the optimal disturbance-to-output 
transfer function is

the optimal parameter 

and the corresponding optimal controller
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The notion of robust stability 
addresses stabilization of plants subject to modeling errors, 
when the actual plant may differ from the nominal model, 
using a fixed controller. 

The ultimate goal is to stabilize the actual plant. 
The actual plant is unknown, however, 
so the best one can do is to stabilize 
a large enough set of plants.

The set of plants is constructed 
as a neighborhood of the nominal plant. 
The size of the neighborhood is measured by a suitable norm, 
most common being the H∞ norm.
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Consider a nominal plant with transfer function S
and its neighborhood S∆ defined by                          ,
where F is a fixed stable rational function 
and ∆ is a variable stable rational function such that              .
Note that ∆F is the normalized plant perturbation away from 1

Hence if              , then for all frequencies ω

so |F(jω)| provides the uncertainty profile 
while ∆ accounts for phase uncertainty.
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Consider the M-Δ feedback system:

Suppose that  M  is stable.
Then the feedback system is stable
for all stable  Δ with  ||Δ||∞ ≤ 1
if and only if  ||M||∞ < 1.

M

Δ
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The given model of uncertainty 

collapses to an M-Δ feedback system with

Suppose that R stabilizes the nominal plant S. 
Then R will stabilize the entire family of plants S∆ iff

 S M SR
RF +

_= 1
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The set of all stabilizing controllers for S = b/a
is described by the formula

where ax + by = 1 and W is a free stable rational parameter. 
The robust stability condition then reads

Any stable rational W that satisfies this inequality 
then defines a robustly stabilizing controller R for S. 
In case W actually minimizes the norm 
one obtains the best robustly stabilizing controller.
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Plant

where the time delay τ is known only to the extent 
that it lies in the interval 0 ≤ τ ≤ 0.2 . 

Find a controller that stabilizes the uncertain plant Sτ . 
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The time-delay factor can be treated 
as a multiplicative perturbation of the nominal plant

by embedding Sτ in the family ,
where ∆ ranges over the set of stable rational functions 
such that ||Δ||∞ ≤ 1. 
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To do this, F should be chosen so that 

A suitable uncertainty profile is

Bode magnitude plot 
of this F and of

for τ = 0.2, 
the worst value
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The set of all stabilizing controllers 
for the nominal plant S is

where W ≠ 1/2(s + 1) is any stable rational parameter. 
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The robust stability condition reads

where

The maximum modulus theorem implies 
that the minimum of the H∞ norm 
taken over all stable rational functions W equals 0.4
and is achieved for
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9
13)1)(1()(,

9
13)1()( 2

1

+
+

+−=
+
+

+=
s
ssssQ

s
sssP

)13)(1(
3115

10
1

)(
)1()()(

++
+

=
−

=
ss

s
sQ
PsPsW

43Czech Technical University in Prague 2010



Thus the robust stability condition is satisfied 
and the best robustly stabilizing controller is
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Most plants have inputs that are subject to hard limits
on the range of variations that can be achieved.

Stabilization subject to input constraints:

 local stabilization,
saturation prevented for a set of initial states,
the control system behaves as a linear one

 global stabilization,
saturation occurs, the control system is nonlinear
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Discrete-time control system
u  Tx0 

Qw0                                      y 

Find +      –
a controller R such that
the control system is locally asymptotically stable
for any initial state  x0 ∈ PF

PF = { x: Fx ≤ f }      polyhedron

and  u(z) = u0 + u1z-1 + u2z-2 + … 
-u− ≤ uk ≤ u+        constraint

S

R
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Stabilizing controllers  R =Y/X
X = x + bW,    Y = y – aW 

Control sequence (w0 = 0 assumed)
u = – c (y – aW) x0 ,     W = p0 + p1z-1 + … 

is a linear function of the parameters p0 , p1, … of the form
uk = Gk( p0, p1, …), k = 0, 1, …

and it satisfies the constraint 
if x0 is in PG = { x: G(p0, p1, …) x ≤ g }  
where
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Now x0 is in PF , so PF must be contained in PG . 

Farkas lemma:

A polyhedron  PF = { x: Fx ≤ f }  
is contained
in a polyhedron  PG = { x: Gx ≤ g } 
if and only if there exists a matrix P
with non-negative entries
such that

PF = G,   Pf ≤ g
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The problem has a solution
if and only if there exist a matrix P with non-negative entries
and real numbers p0, p1, … such that

PF = G(p0, p1, …),   Pf ≤ g

This is a linear program for P and p0, p1, …

The stabilizing controller is then obtained by putting

W = p0 + p1z–1 + …

The program has a finite dimension 
if W is approximated by a polynomial.
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Consider a plant described by input-output and state-output 
transfer functions of the form

The corresponding state equation
xk+1 = xk + 0.5uk ,  yk = 2xk

The plant input is constrained as 

and the initial state x0 belongs to the polyhedron

(or | x0| ≤ 1/3).
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Stabilizing controllers

for a free, proper stable rational parameter W.
The corresponding control sequence is

Now start with W = 0 and check whether 
the resulting linear program for P is feasible:

It is not, hence no controller of order 0 stabilizes the plant.
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Proceed by choosing W = p0 and check whether 
the resulting linear program for p0 and P is feasible:

It is, and the solution

furnishes a stabilizing controller
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The actual polyhedron of stabilizable initial states is 

(or | x0| ≤ 3/8)

and it includes PF as a proper subset.

Note that the closed-loop control system 
features the finite impulse response property.

Selecting a polynomial parameter W
implies that the closed-loop poles are all at the origin. 
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Input constraints, but also output overshoot or undershoot

In discrete time, easy to handle.
The z-transform provides a simple direct relationship

(y0, y1, y2, …)  ↔  y0 + y1z-1 + y2z-2 +…
Time domain constraints boil down to constraints
on polynomial coefficients.

In continuous time, a new approach is needed:
 assign distinct negative real poles (rather than poles at z = 0)
 express time signals as polynomials 

in the corresponding exponential modes
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Given a plant S = b/a, 
we are seeking a stabilizing controller R = q/p
such that the output y asymptotically follows a reference r

r u y

while the time-domain constraints
umin ≤ u(t) ≤ umax ,   ymin ≤ y(t) ≤ ymax are satisfied for all t ≥ 0, 
where umin, umax, ymin, and ymax are given real numbers. 

We assume that S is strictly proper 
and that R is proper so as to avoid impulsive modes.

R S–
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Assign distinct negative integer poles

Then signals are sums of decaying exponentials modes

Let g be the greatest common divisor of the poles si  

so that si = ki g for some integers ki .
The signals can now be expressed as polynomials in 

∏ _
i issdbqap )(=:=+

tsts i
i i

i
i i ytyutu

__
∑∑ e=)(,e=)(

gteλ
_

=

∑∑ i
k

ii
k

i
ii λyλyλuλu =)(,=)(

56Czech Technical University in Prague 2010



When time t increases from 0 to ∞, 
indeterminate λ decreases from 1 to 0 
and the time constraints become the polynomial constraints

umin ≤ u(λ) ≤ umax,  ymin ≤ y(λ) ≤ ymax

or, equivalently, the polynomial non-negativity constraints 

along the interval λ ∈ [0, 1]. 
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A polynomial non-negativity constraint

is equivalent to the existence 
of real symmetric matrices Pmin, Pmax of size n + 1 
satisfying the linear matrix inequality constraints

where Hi is the basis Hankel matrix 
with ones along the (i + 1)th anti-diagonal 
and zeros elsewhere.
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Now all proper rational controllers R
that assign the pole polynomial d := Пi (s – si) 
are parameterized by a numerator polynomial w
of appropriate degree. 

The coefficients of w are our design parameters 
and they appear in the coefficients ui , yi

of the closed-loop signals in an affine manner. 

Therefore the linear matrix inequalities are convex 
in the design parameters. 
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Given the plant

the stabilizing controller

assigns the closed-loop 
poles at – 1, – 2, – 3, – 4, – 5 
while ensuring asymptotic 
step reference tracking. 
Despite the poles being negative real, 
the step response features an unacceptable overshoot of 140 % 
due to system zeros.
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The set of all proper rational controllers 
that assign the above poles is given by

where w = w0 + w1s is a free polynomial of degree at most 1. 
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The closed-loop responses to a step input are affine in w,

and correspond to a sum of decaying exponential modes 
in the time domain,

or to a polynomial 

in the indeterminate            .  

The coefficients yi are linear functions of w0 and w1.
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Suppose the desired maximum overshoot is 20%
y(t) ≤ 1.2 y0

equivalent to the polynomial non-negativity constraint

and in turn equivalent 
to an LMI in w0 and w1.

The LMI returns
w(s) = – 100.36 – 12.27s

keeping the controller
of order 3. 
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A weakness of the sequential design 
based on the Youla-Kučera parameterization 
is that each performance specification beyond stability 
may increase the order of the controller.

Actually, fixed-order stabilizing controllers
can be found by solving an LMI.
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The degree control in the parameter W = w/d is difficult. 

If d is fixed, all closed-loop transfer functions are affine in w
but the order of w increases with each additional specification. 
If d is not fixed, we have a greater flexibility 
but we run into difficulties as the set of stable polynomials 
is not convex in the space of coefficients.

The difficulty was resolved by providing a 
convex inner approximation of the non-convex stability domain
in the space of polynomial coefficients. 
This approximation is parameterized by a given polynomial, 
referred to as the central polynomial.
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Let us now show how to design stabilizing controllers 
of a fixed (presumably low) order. 

Suppose a plant S = b/a is given 
and suppose that we have a stabilizing controller .

We seek to find a stabilizing controller R = y/x
of a given order m, if such a controller exists.

pqR /=
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The two stabilizing controllers are related as

p = x + bW,   q = y – aW,   where W = w/d.

Then
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Let 

be a minimal polynomial basis of A. 
Then all stabilizing controllers for S are 

where λ1 and λ2 are polynomials 
such that λ1d1 + λ2d2 is a stable polynomial.
A stabilizing controller of order m exists if

Alas, the set of stable polynomials is not convex. 
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Given a fixed stable “central” polynomial c(s) of degree n, 
polynomial d(s) of degree n is stable 
if there exists a real symmetric matrix Q of size n
solving the linear matrix inequality

where 

are projection matrices, 
c and d are the coefficient vectors of c(s) and d(s), 
and ε is an arbitrarily small positive scalar.
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The interpretation of this result is as follows: 
as soon as polynomial c is fixed, 
we obtain a sufficient linear matrix inequality condition 
for stability of polynomial d. 

Therefore, 

is a convex inner approximation of the (generally non-convex) 
stability domain in the space of polynomial coefficients
around the central stable polynomial.
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Using the convex inner approximation 
of the set of stable polynomials,

we can optimize over polynomials λ1 and λ2

to enforce low degrees of x and y (linear algebraic constraint)

as well as stability of d (linear matrix inequality constraint)
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Consider a plant of order 3,

A stabilizing controller of order 2
can be found by placing the closed-loop poles at arbitrary 
locations. For example, the controller

places all five closed-loop poles at  –1. 

Find a lower order stabilizing controller.
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A minimal polynomial basis for the polynomial matrix A is

All the stabilizing controllers 
can be recovered from the polynomials λ1 and λ2

such that the pole polynomial 
d = – λ1 + λ2(s3 + s2 + 10s – 26) 

is stable. 
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From the first two rows of the basis 
a controller of order 0 can be obtained 
by restricting the parameters λ1 and λ2 to be constant. 

Hurwitz stability criterion then reveals
that d is stable if and only if λ1 ∈ (– 36, – 26) and λ2 = 1.

For example, with λ1 = – 30 we obtain the controller R(s) = 4 
and the closed-loop pole polynomial d(s) = s3 + s2 + 10s + 4.

In this example, we were able to obtain an exact solution. 
In general, the linear matrix inequality has to be used.
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The benefits of representing stabilizing controllers
by a single parameter

 easy accommodation of additional design specifications
by selecting an appropriate parameter

 all transfer functions in a stabilized system
are linear in the parameter
(while they are nonlinear in the controller)

 the parameter belongs to a smaller set
of stable rational functions
(while the controller is any rational)
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