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A Typical Control Problem

Given a plant S,

determine a controller R so that

(1) the control system is stable, either Res<0or |z] <1
(2) additional specifications are met.

d
r e u | Vv y
ﬁ— R S >
It is logical to stabilize first,

then meet the additional specifications.

Then one needs to determine all stabilizing controllers.
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Polynomial Description

Let S=Db/a and R =qg/p, coprime polynomial fractions.
Closed loop sensitivity

1 p
H. = = = aX
sT1+SR O ap + bq 2
and complementary sensitivity
SR
= =h—=py

H. = = =
“ 1+SR ap+hg
In a stable system, X and Y are stable.

However, X and Y cannot be arbitrary since Hg + H- = 1.
Hence

aX +hY =1
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Parameterization of Stabilizing Controllers

All controllers that stabilize the plant S =b/a
are given by R=Y/X,
where X, Y is a stable rational solution pair of

aX +bY =1
All solution pairs can be expressed in parametric form as
X=x+bW, Y =y-aW

where X,y are polynomials such that ax + by =1
and W is a free stable rational parameter.

This is a fundamental result,
called the Youla-Kucera parameterization.
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Example 1

Plant 1
S5(s) =7
Equation
sx+y=1
A solution x =0, y = 1 yields the stabilizing controllers

R(s) = 1_\/\SIW , W =0 stable rational

For example,
W = 1/(s+1) yields a proportional controller R = 1.

Taking W =1 results In R(s) = 1-5;
this controller is stabilizing but it is not proper
and the feedback system has a pole at s = «.
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Dicsrete-Time Systems

The parameterization applies to discrete-time systems as well.

Continuous-time systems can give rise to transfer functions
that are not proper.

In the case of discrete-time systems, however,
additional constraints have to be imposed:

the transfer functions S and R are to be proper

(so that the plant and the controller are causal systems)
and one of them is to be strictly proper

(so that the closed loop system is causal).

The chronology of samples in control systems
Is usually taken in such a way that S is strictly proper.

Czech Technical University in Prague 2010



Example 2

Plant 5(2) 1
)= ——
z—1
erte Z_l
S(z) =
(D=1
Equation

(1-z7YYx+z"'y=1

A solution x = 1, y = 1 yields the stabilizing controllers

for any proper stable rational W.
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Historical Notes

Jury 1959 deadbeat, SISO plant

Volgin 1962 pole placement

Astrom 1970 minimum variance, minimum phase plant
Peterka 1972 minimum variance

Kucera 1973 stabilization, parameterization, SISO plant
Kucera 1975 stabilization, parameterization

Youlaetal 1976  H, control, stabilization, parameterization
Kucera 1979 polynomial equation approach

Desoer et al 1980 proper stable fractions

Nett et al 1984 state space formulas

It took decades to appreciate the importance of the result
and come up with applications.
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Additional Performance Specifications

< There are as many stabilizing controllers for a given plant
as stable rational free parameters W.

« The set of stabilizing controllers for a given plant
contains controllers of arbitrarily high order.

« The parameter W In turn parameterizes
all resulting stable closed-loop transfer functions
and the parameterization is linear in W,

i resals sellr) (5 ow bo-awollr)

while 1t i1s nonlinear in R.
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Asymptotic Properties

Reference tracking:

output y follows reference r (error e goes to zero)
asymptotically.

In terms of Laplace transforms,

e(s) = Hg(s) r(s) Is to be a stable rational function.

Disturbance attenuation:

effect of disturbance d on output y decreases asymptotically.

In terms of Laplace transforms,
y(s) = SHq(s) d(s) is to be a stable rational function.

This is to be achieved by a selection of the parameter W.
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Example 3

Plant 1

Stabilizing controllers

for any stable rational W= 0.
Achievable sensitivity transfer functions are Hg = (s + 1)W.

To track a step reference, r(s) = 1/s, we have e(s) = (s + 1)W/s,
so we must take W = sW, for any stable rational W, 0.

To attenuate a sinusoidal disturbance, d(s) = s/(s? + ®?),

we constrain the parameter as W = (s + ®?)W,

for any stable rational W, # 0.

This demonstrates the internal model principle.

..........
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Pole Placement

Plant S =b/a
Stabilizing controller R =Y/X,
where X=x+bW, Y=y-aW and ax + by = 1.

Let W=w/d, where d Is a Hurwitz polynomial.
Then - dy—aw _q
dx+bw p
Pole placement equation
ap+bg=d(ax+by)=d
The polynomial d specifies the closed-loop poles

while w represents the remaining degrees of freedom.

Czech Technical University in Prague 2010
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Example 4

Plant 1
S(s)=——
(8)=_"3
Stabilizing controllers
R(s) = 1-(s-DW , W # 0 stable rational

W
L_et the desired pole locations be given by d(s) = s + 2s +1.
Put W = w/d.
Then 24925 +1)—(s—1
R(s):(s S V3 (s—Dw

and for R to have order 1, take w(s) = s + o for any real w.
Otherwise poles at s = oo as well.
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Deadbeat Control

A discrete-time control problem.

Plant S =b/a
Find a stabilizing controller R =Y/X
such that all four closed- loop transfer functions

Hs = a (x+bW), SHg =b(x+bW),
H-.=b(y—-aw), S'H.=a(y—-aWw)

are FIR (vanish in a finite/ shortest time).
This occurs iff W is a polynomial in z-1.

Special case of pole placement: all poles at z = 0.
Shortest transient time iff
X, y IS the least-degree solution pair of ax + by = 1.

Czech Technical University in Prague 2010
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Example 5

Plant 771

S(z) = 1_,1

Stabilizing controllers

Then
Hy=1-z1+71(1-zY)W, SHg=z1+z772W,
He=z1-711-zY)W, StH.=1-z71-(1-771)W

are all polynomials in z71 iff W is a polynomial in z2.

The shortest impulse responses are achieved for W = 0.
The transients will vanish in one step.
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H, Optimal Control

Plant S =Db/a
Find a stabilizing controller R =Y/X
such that, say, H: = b(y —aW) has a least H, norm.

Let aff be a polynomial
defined by keeping the stable (in Res < 0) zeros of ab

while replacing the unstable (in Res > 0) ones
with their negative values.

In fact, « Is the spectral factor of a(s)a(-s), £ is that of b(s)b(-s).
Then ab/ap is all-pass and

M—on/)’

a

2 2
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H, Optimal Control

Consider the decomposition

@p__.q

a a
with r polynomial and g/a strictly proper.

With this decomposition,
He[, =

2

9

a 2
because g/a and r — aWp are orthogonal
and thus the cross-terms contribute nothing to the norm.

The last expression is a complete square
whose first term is independent of W.
Hence the minimum is unique and achieved for W = r/a.

+r—aWpl;

R

Czech Technical University in Prague 2010
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H, Optimal Control

The H, optimal control is a special case of pole placement.

Indeed,
r

y-a

aff ayp—ar g
R = » — y +br = —
x+b b P
and af

ap+bg=a(axp +br)+b(ayp—ar)=apf(ax+by)=af
The optimal closed-loop poles are given by ap.
The pole placement equation has more than one solution.

Which one is optimal? The one with g/a strictly proper.
It is the solution pair p, g with g having a least degree.

LR
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Example 6

Plant 1
S(S) = a
Stabilizing controllers
R(s) = 1=(s=1W , W # 0 stable rational

The complementary sensitivity function to be minimized is
H.(s)=1-(s-1)W

Nowa=s+1, =1

and the polynomial part of ayp/a = (s+1)/(s-1) isr =1.

Thus H; attains minimum H, norm for 1

W=——
s+1

and the corresponding optimal controller is R(s) = 2.

Czech Technical University in Prague 2010
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Example 6

Alternatively, one can solve the Diophantine equation
(s-1)p+gq=s+1
for the solution pair p, g such that g/(s —1) is strictly proper.

This yields the least-degree solution pair with respect to g,
namelyp=1,q9=2.

The optimal controller is R(s) = g/p = 2.

In general, it is simpler to solve the polynomial equation
than performing calculations with rational functions.

Czech Technical University in Prague 2010
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[, Optimal Control

The H, norm minimization is appropriate
for systems excited by finite energy signals.

When the exogenous signals persist,

a more relevant norm to measure system performance
IS the L; norm (for continuous-time systems)

or the I, norm (for discrete-time systems).

The discrete-time case is much easier.

Plant S =b/a
Find a stabilizing controller R =Y/X
such that, say, Hs = a(x + bW) has a least |, norm.
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[, Optimal Control

The optimal sensitivity function Hg = a(x + bW)
IS not unique but it has a FIR property.
Perform stable-unstable factorizations a = a*a- and b = b*b-,

where a- and b~ absorb all the zeros of a and b, respectively,
In the open unit disc | zY| < 1.

Then Hg is a polynomial in z- iff W has the form

W
W = ,
a’b’

where w is a free polynomial.

Indeed, Hi=ax+a-b-w
and the I;-norm minimization of Hg Is equivalent
to a finite linear program for the coefficients of w.

..........
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Example 7

Plant 1_
S(z2)=z"" N

Equation
(1-z7')x+z2 ' (z'-15)y=1
Asolution x=1-05z"%, y=-3+2z1
yields the set of stabilizing controllers
. -1 _ (1 _n5,-1y2
R(2) = 3+ 2_z1 SL iz )W
1-0.5z2"+z (z " -15W

for any proper and stable rational parameter W.
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Example 7

The set of achievable sensitivity functions is

Ho(z7')=(1-227")°(1-05z7")+z7'(1-227")°(z " -1.5W

and those which are polynomialsin z- are

Ho(z7')=(1-22")°(1-05z")+z'(1-2z7")°w
where w is the numerator polynomial in z-! of

W

W =
z7'-15

Czech Technical University in Prague 2010
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Example 7

An upper bound for the degree of w is 2.
The linear program:
minimize t=r;+r,+r;+r,+1r;
subjectto —r;<h;<r, and r;20, 1=1,2,...,5

where o L i
h, —4.5 1 0 O
h, 6 -4 1 0 |[w,]
hy|=| =2 |+| 4 -4 1 ||w,
h, 0 0 4 -—4]lw,
h] [ O] L0 0 4]

then returns

=

o= 1.5 w; =0, w, =0so that

1.5
W =

771-15
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Example 7

The optimal controller is

. -1
R(z) = 3-4z

A+z "z -15)
the corresponding optimal sensitivity function is

H (z)=1-3z7"+4z7"°.

It is to be noted that R is not a deadbeat controller
because SH Is not a polynomial.

Indeed, only polynomial parameters W

result in deadbeat controllers.
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H_ Optimal Control

The H_ norm measures
the transfer of energy through the system.

Plant S =b/a
Find a stabilizing controller R =Y/X
such that, say, SH¢ = b(x + bW) has a least H_ norm.

This 1s a disturbance attenuation problem
for d € L, (continuous time) or d <1, (discrete time).

The discrete-time case has a lot cleaner solution
than the continuous-time one.

Czech Technical University in Prague 2010
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H_ Optimal Control

The set of proper and stable real rational functions
equipped with inner product

(a,b) =24 { a(z)b(z)dz

where C Is the unit circle oriented counterclockwise,
forms a linear space denoted by H,.

The problem of minimizing
SH|, =If-ghl,
where f :=bx, g:=-b™b~, h:=b"b*W s to find
the closest point to f in the subspace gH,,
where the distances are measured using the H_ norm.

R

Czech Technical University in Prague 2010

29



H_ Optimal Control

Associated with each proper and stable rational function F
IS a linear operator on H, denoted by T.

Let N denote the orthogonal complement of T, in H, and
let 77 denote the orthogonal projection mapping H, onto N.

Then ITT,_ , Is the same for all h and In fact equals 17T, .
Thus, :
min, | f — gh|,= HﬂTf H

If h_ attains this minimum
and g e N is a function such that [ITT,q| = 17T, | |q],
then the optimal sensitivity is

(T =gh,)(2)=UITq)2)/q(2).

Czech Technical University in Prague 2010
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Example 8

Plant 771 -2
S(z2)=z"
@) 1-z7

Equation

1-z)x+z(z"-2)y=1
Asolution x=1-z% y=1
yields the set of stabilizing controllers

~1-(1-zHW

R(2)= -z 427z -2)W

for any proper and stable rational parameter W.
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Example 8

The task is to minimize the H_norm of
SH (2)=z"'(z"-2)1-z7")+z7°(z7" =2)*'W
Thus
f=z"(z"-2)(1-z"), gi=-2z7%, h:=(z"-2)°W

Since g has two zeros, the subspace N has dimension 2
and an orthonormal basis for N is given by 1, z 1.
The matrix representation A of 77T, with respect to this basis

is 0 0
A=
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Example 8

Now |ITT, | = o(A), the largest singular value of A,

and q(z), (I7T.q)(z) are respectively given,
with respect to the basis of N, by p, Ap,
where p is the eigenvector of ATA corresponding tog*(A).

In this case, o°(A)=2 and q(z)=1, (IIT,q)(z)=-2z".
It follows that the optimal disturbance-to-output
transfer function is SH. (z) = 27

the optimal parameter 057'—-175
Woo(z) = -1 2
(z7-1.5)
and the corresponding optimal controller

0.5
77t =2

R.(2)=

Czech Technical University in Prague 2010
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Robust Stabilization

The notion of robust stability

addresses stabilization of plants subject to modeling errors,
when the actual plant may differ from the nominal model,
using a fixed controller.

The ultimate goal is to stabilize the actual plant.
The actual plant is unknown, however,

so the best one can do is to stabilize

a large enough set of plants.

The set of plants is constructed

as a neighborhood of the nominal plant.

The size of the neighborhood is measured by a suitable norm,
most common being the H_norm.
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Model of Uncertainty

Consider a nominal plant with transfer function S

and its neighborhood S , defined by S, :=(1+ 4F)S,

where F is a fixed stable rational function

and A4 is a variable stable rational function such that |4| <1.

Note that AF is the normalized plant perturbation away from 1
%‘—1 = AF
Hence if |4). <1, then for all frequencies o

SA(ja))_l

<|F(j@)

so |F(jw)| provides the uncertainty profile
while 4 accounts for phase uncertainty.
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Small Gain Theorem

Consider the M-4 feedback system:

Suppose that M is stable.

Then the feedback system is stable
for all stable 4 with |[4||, <1

If and only If ||M|| < 1.
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Robust Stability Condition

The given model of uncertainty

o E -5} s

collapses to an M-4 feedback system with
M=-F

SR
1+ SR

Suppose that R stabilizes the nominal plant S.
Then R will stabilize the entire family of plants S , iff

FH[, <1
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Parameterized Condition

The set of all stabilizing controllers for S = b/a
Is described by the formula

y—aW

X + bW

where ax + by =1 and W Is a free stable rational parameter.
The robust stability condition then reads

IFo(y—aw)|, <1

Any stable rational W that satisfies this inequality
then defines a robustly stabilizing controller R for S.

In case W actually minimizes the norm
one obtains the best robustly stabilizing controller.

R=-

Czech Technical University in Prague 2010
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Example 9

Plant

S_(s)= :%ie"s

where the time delay 7z is known only to the extent
that it lies in the interval 0 < 7<0.2.

Find a controller that stabilizes the uncertain plant S_.
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Example 9

The time-delay factor can be treated
as a multiplicative perturbation of the nominal plant

s+1
S(s)=——
(s) <1

by embedding S_in the family S,:= (1+ 4F)S,
where A4 ranges over the set of stable rational functions
such that ||4||, < 1.
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Example 9

To do this, F should be chosen so that

S,(] . _
A(Jm)_l — ‘e—Jwr _1‘ < ‘F(JG))‘
S(Jw)
A suitable uncertainty profile is
F(s) = 3s+1
s+9
Bode magnitude plot
of this F and of
e'”*—1for z=0.2,
the worst value |

140 Ll Ll Ll L
-1
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Example 9

The set of all stabilizing controllers
for the nominal plant S is

F—(s—-1)W

I:\)(S)=—§+(s+l)w

where W # 1/2(s + 1) is any stable rational parameter.
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Example 9

The robust stability condition reads

P-QW| <1
where
3s+1 3s+1
P(s)=%1(s+1 , s)=(s—-1)(s+1
(5)=3(s+1)" " Q(9)=(s-1)(s+1) "

The maximum modulus theorem implies

that the minimum of the H_ norm

taken over all stable rational functions W equals 0.4
and is achieved for

P(s)-P(1) 1 15s+31
Q(s)  10(s+1)(3s+1)

W (s) =

Czech Technical University in Prague 2010
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Example 9

Thus the robust stability condition is satisfied
and the best robustly stabilizing controller is

_2s5+9
" 13s+1

R(s)
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Stabilization Subject to Input Constraints

Most plants have inputs that are subject to hard limits
on the range of variations that can be achieved.

Stabilization subject to input constraints:

« local stabilization,
saturation prevented for a set of initial states,
the control system behaves as a linear one

« global stabilization,
saturation occurs, the control system is nonlinear

Czech Technical University in Prague 2010
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Problem Formulation

Discrete-time control system

Qwy y

_ -O— R

Find + -
a controller R such that

the control system is locally asymptotically stable

for any initial state x, € Pg
P-={x:Fx<f} polyhedron

and u(z) =u, +uzt+u,z?+ ...
-u—<u,<u* constraint

A

Czech Technical University in Prague 2010
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Controller Parameterization

Stabilizing controllers R =Y/X
X=x+bW, Y=y-aW
Control sequence (w,= 0 assumed)
u=-c(y—-aw)x,, W=p,+pzi+...
IS a linear function of the parameters p,, p;, ... of the form
U, = G (Pg; Pys ---), K=0,1, ...
and it satisfies the constraint

If X, 1s In Pg={x: G(pgy, Py, ---) X< g}

where _ ) L
GO(pO’ p1"") ut

_Go(po’ pl,...) u
G(pO’pli"'): Gl(po’plv--) ’ g: ut
_Gl(po: pl,---) u
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Polyhedron Inclusion

Now X, IS In Pg, so P must be contained in P .

Farkas lemma:

A polyhedron Pr={x: Fx<f}

IS contained

In a polyhedron P;={x: Gx<g}
If and only if there exists a matrix P
with non-negative entries

such that

PF=G, Pf<g
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Solution

The problem has a solution
If and only If there exist a matrix P with non-negative entries
and real numbers p,, p;, ... such that

PF=G(py, pys ---), Pf<g
This is a linear program for P and p,, py, ---
The stabilizing controller is then obtained by putting
W=p,+pzt+...

The program has a finite dimension
If W Is approximated by a polynomial.
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Example 10

Consider a plant described by input-output and state-output

transfer functions of the form
-1

Z 2
S(z) = CT(2)=
(2) 1—z71 (2) 1—z71

The corresponding state equation
X1 = X + 0.5U,, Y, = 2X,
The plant input is constrained as

—-1<u, <1, k=0]1,..
and the initial state x, belongs to the polyhedron

1
p_: [_11]x0 s[z] (or | x| < 1/3).

Czech Technical University in Prague 2010
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Example 10

Stabilizing controllers

2—(1-2z27")W
R@) =" W

for a free, proper stable rational parameter W.
The corresponding control sequence is

u(z) = [—4+ 2(1-2z7HW ]xo

Now start with W = 0 and check whether
the resulting linear program for P is feasible:

(SR HER

It is not, hence no controller of order 0 stabilizes the plant.
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Example 10

Proceed by choosing W = p,and check whether
the resulting linear program for p,and P is feasible:

[ —4+2p, |
17 | 4-2p, P!
P[—l}_ —4p, | P[% B
4p, 1
It IS, and the solution 0 8]
2 b 8 0
P=3 "%o 8
_8 O_

furnishes a stabilizing controller
A+477"
3+2z°

R(z) =

1

Czech Technical University in Prague 2010
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Example 10

The actual polyhedron of stabilizable initial states is

-8 1
1| 8 1
- = < or | X, < 3/8
PG'3—8X0_1 (or [ Xl )
_8_ _1_

and it includes Pg as a proper subset.

Note that the closed-loop control system
features the finite impulse response property.

Selecting a polynomial parameter W
Implies that the closed-loop poles are all at the origin.

Czech Technical University in Prague 2010
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Input and Output Shaping

Input constraints, but also output overshoot or undershoot

In discrete time, easy to handle.
The z-transform provides a simple direct relationship

Vo Y1 Yoo -) > Yo+ yaZt +Y,22 +...
Time domain constraints boil down to constraints
on polynomial coefficients.
In continuous time, a new approach is needed:

« assign distinct negative real poles (rather than poles at z = 0)

« express time signals as polynomials
In the corresponding exponential modes

Czech Technical University in Prague 2010 54



Problem Formulation

Given a plant S = b/a,
we are seeking a stabilizing controller R = g/p
such that the output y asymptotically follows a reference r

r u y

T

while the time-domain constraints
Unin SUM) S Upos Ymin < V() < y,.4 are satisfied for all t > 0,

where Ui, U, Ymin, @Nd Y, are given real numbers.

We assume that S is strictly proper
and that R is proper so as to avoid impulsive modes.
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Pole Assignment

Assign distinct negative integer poles

ap+bg=d := |] (s-s,)

Then signals are sums of decaying exponentials modes
—s;t

u(t)= ue Ty =) ye

Let g be the greatest common divisor of the poles s;
so that s; = k; g for some integers k; .
The signals can now be expressed as polynomialsin A =¢™“

st

u(2) =2, U, y(2) =2, y, 4
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Polynomial Non-Negativity Constraints

When time t increases from 0 to oo,
Indeterminate 4 decreases from 1to 0
and the time constraints become the polynomial constraints

mln - u(}“) < umax’ ymln - y(}“) < ymax
or, equivalently, the polynomial non-negativity constraints

u(}“)_umin > 01 —U(l) + U nax > O’
Y(4)= Ymin 20, = Y(4) * Yng 20,

along the interval 4 € [0, 1].

Czech Technical University in Prague 2010
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Convex LMI Constraint

A polynomial non-negativity constraint

p(2)= 2 pA =0, forall 201[2

min ? max ]

IS equivalent to the existence
of real symmetric matrices P, Py, Of Sizen +1
satisfying the linear matrix inequality constraints

p, =trace[P.. (H.,—4.. H)+P__ (4

min max max

P.. 20 P 20

m

where H; is the basis Hankel matrix
with ones along the (i + 1)th anti-diagonal
and zeros elsewhere.

Czech Technical University in Prague 2010
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Design Parameters

Now all proper rational controllers R

that assign the pole polynomial d :=IT; (s — s;)
are parameterized by a numerator polynomial w
of appropriate degree.

The coefficients of w are our design parameters
and they appear in the coefficients u;, y;
of the closed-loop signals in an affine manner.

Therefore the linear matrix inequalities are convex
In the design parameters.

Czech Technical University in Prague 2010
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Example 11

Given the plant s+05

S(S - 2) | | 'Oi.rlpm:espunsellaamfemrmstml

the stabilizing controller

384s + 240
s®+17s°+119s+79 ¢

R(s) =

assigns the closed-loop
polesat—-1,-2,-3,—-4,-5
while ensuring asymptotic |
step reference tracking. N
Despite the poles being negative real,

the step response features an unacceptable overshoot of 140 %
due to system zeros.
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Example 11

The set of all proper rational controllers
that assign the above poles is given by

384s +240—-s(s—2)w
s®+17s° +119s+ 79+ (s+0.5)w

where w = w, + w,S Is a free polynomial of degree at most 1.

R(s) =
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Example 11

The closed-loop responses to a step input are affine in w,

384s” +432s+120—(s°-1.55°-s)w
(s+1)(s+2)(s+3)(s+4)(s+5)

y(s) =

and correspond to a sum of decaying exponential modes
In the time domain,

y(t)=Y, ye™

5 i
y(2) =), V4
in the indeterminate i =e.

or to a polynomial

The coefficients y; are linear functions of w, and w;.

Czech Technical University in Prague 2010
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Example 11

Suppose the desired maximum overshoot is 20%

y(t) <1.2y,
equivalent to the polynomial non-negativity constraint

P(2) =1.2Y, = Y(4) = 0.2y, = Y, A= Y, X = Y, 4 = Y, A' = Y £ >0

and in turn equivalent
to an LMI in w, and w;.

The LMI returns
w(s) =—100.36 — 12.27s

keeping the controller
of order 3.

||||||||||
0 1 2 K] 4 6 L] 7 & 8 10
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Fixed-Order Stabilizing Controllers

A weakness of the sequential design
based on the Youla-Kucera parameterization

Is that each performance specification beyond stability
may increase the order of the controller.

Actually, fixed-order stabilizing controllers
can be found by solving an LMI.
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Polynomial Degree Control

The degree control in the parameter W = w/d is difficult.

If d is fixed, all closed-loop transfer functions are affine inw
but the order of w increases with each additional specification.
If d is not fixed, we have a greater flexibility

but we run into difficulties as the set of stable polynomials

IS not convex In the space of coefficients.

The difficulty was resolved by providing a
convex inner approximation of the non-convex stability domain

In the space of polynomial coefficients.
This approximation is parameterized by a given polynomial,
referred to as the central polynomial.
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Problem Formulation

et us now show how to design stabilizing controllers
of a fixed (presumably low) order.

Suppose a plant S = b/a Is given
and suppose that we have a stabilizing controllerR =q/p.

We seek to find a stabilizing controller R = y/x
of a given order m, if such a controller exists.
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The Two Controllers Relationship

The two stabilizing controllers are related as

p=x+bW, q=y-aW, where W = w/d.

Then

e
y
d

_W_
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Minimal Polynomial Basis

Let (X, X, |
Yo Y2
d, d,
Wl W2_

be a minimal polynomial basis of A.
Then all stabilizing controllers for S are

R=(4Y, +4,Y,) (4% +4,X,)

where 4, and 4, are polynomials
such that 4,d, + 4,d, is a stable polynomial.

A stabilizing controller of order m exists if
sy
Y. Y.l A4

Alas, the set of stable polynomials is not convex.
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Linear Matrix Inequality

Given a fixed stable “central” polynomial c(s) of degree n,
polynomial d(s) of degree n is stable

If there exists a real symmetric matrix Q of size n

solving the linear matrix inequality

H.(d,Q)=c'd+d'c—ec'c+ I QII,+I1,QIT, >0
where 1 0] 0 1 -
H1= y H2= . .

1 0 0 1

are projection matrices,
¢ and d are the coefficient vectors of c(s) and d(s),
and ¢ Is an arbitrarily small positive scalar.
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Convex Inner Approximation

The interpretation of this result is as follows:

as soon as polynomial c is fixed,

we obtain a sufficient linear matrix inequality condition
for stability of polynomial d.

Therefore,

H,={d: 3Q: H_(d,Q) >0}
IS a convex inner approximation of the (generally non-convex)
stability domain in the space of polynomial coefficients
around the central stable polynomial.
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Problem Solution

Using the convex inner approximation
of the set of stable polynomials,

we can optimize over polynomials 4, and 4,
to enforce low degrees of x and y (linear algebraic constraint)

N
Y. Yo ll4

as well as stability of d (linear matrix inequality constraint)

o i}
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Example 12

Consider a plant of order 3,

1
s(s®*+s+10)

A stabilizing controller of order 2

can be found by placing the closed-loop poles at arbitrary
locations. For example, the controller

S(s) =

—265° +45s+1
s*4+4s—4
places all five closed-loop poles at -1.

R(s)=

Find a lower order stabilizing controller.
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Example 12

A minimal polynomial basis for the polynomial matrix A is

0 1

-1 — 26

-1 $°+s°+10s—26
s’ +4s—4 149s—103

All the stabilizing controllers
can be recovered from the polynomials 4, and 4,
such that the pole polynomial

d=-21, +7,(s+ 5%+ 10s — 26)

IS stable.
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Example 12

From the first two rows of the basis
a controller of order 0 can be obtained
by restricting the parameters 4, and 4, to be constant.

Hurwitz stability criterion then reveals
that d is stable if and only if 4, € (— 36, — 26) and 4, = 1.

For example, with 4, = — 30 we obtain the controller R(s) = 4
and the closed-loop pole polynomial d(s) = s + s + 10s + 4.

In this example, we were able to obtain an exact solution.
In general, the linear matrix inequality has to be used.
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Summary

The benefits of representing stabilizing controllers
by a single parameter

< easy accommodation of additional design specifications
by selecting an appropriate parameter

< all transfer functions in a stabilized system
are linear in the parameter
(while they are nonlinear in the controller)

« the parameter belongs to a smaller set
of stable rational functions
(while the controller is any rational)
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