Polynomial Equation Approach to Control System Synthesis

Vladimír Kučera Czech Technical University in Prague

12th International Carpathian Control Conference 2011

Outline of the Presentation

Basic tools: parameterization of all stabilizing controllers linear equations for polynomials (Diophantine equations)

Motivation, historical notes

Standard applications:

asymptotic properties, pole placement, deadbeat control, H_2 optimal control, l_1 optimal control, robust control

Advanced applications: stabilization subject to input constraints, input and output shaping, fixed-order controller design

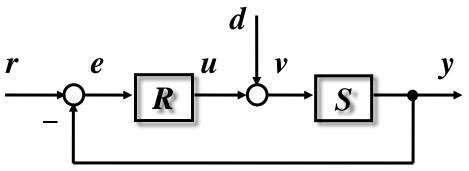
A Typical Control Problem

Given a plant S,

determine a controller R so that

(1) the control system is stable, either Res < 0 or |z| < 1

(2) additional specifications are met.



It is logical to stabilize first,

then meet the additional specifications.

Then one needs to determine *all* stabilizing controllers.

Polynomial Description

Let S = b/a and R = q/p, coprime polynomial fractions. Closed loop sensitivity

$$H_{S} = \frac{1}{1 + SR} = a \frac{p}{ap + bq} := aX$$

and complementary sensitivity

$$H_C = \frac{SR}{1 + SR} = b \frac{q}{ap + bq} := bY$$

In a stable system, X and Y are stable. However, X and Y cannot be arbitrary since $H_S + H_C = 1$. Hence

$$aX + bY = 1$$

Parameterization of Stabilizing Controllers

All controllers that stabilize the plant S = b/aare given by R = Y/X, where *X*, *Y* is a *stable rational* solution pair of

aX + bY = 1

All solution pairs can be expressed in parametric form as

$$X = x + bW, \quad Y = y - aW$$

where x, y are polynomials such that ax + by = 1and W is a free *stable rational* parameter.

This is a fundamental result, called the *Youla-Kučera parameterization*.

Plant Equation $S(s) = \frac{1}{s}$ sx + y

sx + y = 1

A solution x = 0, y = 1 yields the stabilizing controllers

$$R(s) = \frac{1-sW}{W}, \quad W \neq 0$$
 stable rational

For example,

W = 1/(s+1) yields a proportional controller R = 1.

Taking W = 1 results in R(s) = 1 - s; this controller is stabilizing but it is not proper and the feedback system has a pole at $s = \infty$.

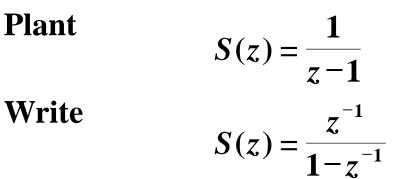
Dicsrete-Time Systems

The parameterization applies to discrete-time systems as well.

Continuous-time systems can give rise to transfer functions that are not proper.

In the case of discrete-time systems, however, additional constraints have to be imposed: the transfer functions *S* and *R* are to be *proper* (so that the plant and the controller are causal systems) and one of them is to be *strictly proper* (so that the closed loop system is causal).

The chronology of samples in control systems is usually taken in such a way that *S* is strictly proper.



Equation

$$(1-z^{-1})x+z^{-1}y=1$$

A solution x = 1, y = 1 yields the stabilizing controllers

$$R(z) = \frac{1 - (1 - z^{-1})W}{1 + z^{-1}W}$$

for any proper stable rational W.

Historical Notes

Jury 1959	deadbeat, SISO plant
Volgin 1962	pole placement
Åström 1970	minimum variance, minimum phase plant
Peterka 1972	minimum variance
Kučera 1973	stabilization, parameterization, SISO plant
Kučera 1975	stabilization, parameterization
Youla et al 1976	H_2 control, stabilization, parameterization
Kučera 1979	polynomial equation approach
Desoer et al 1980	proper stable fractions
Nett et al 1984	state space formulas

It took decades to appreciate the importance of the result and come up with applications.

Additional Performance Specifications

- * There are as many stabilizing controllers for a given plant as stable rational free parameters *W*.
- * The set of stabilizing controllers for a given plant contains controllers of arbitrarily high order.
- * The parameter W in turn parameterizes all resulting stable closed-loop transfer functions and the parameterization is *linear* in W,

 $\begin{bmatrix} v \\ y \end{bmatrix} = \frac{1}{1+SR} \begin{bmatrix} 1 & R \\ S & SR \end{bmatrix} \begin{bmatrix} d \\ r \end{bmatrix} = \begin{bmatrix} a(x+bW) & a(y-aW) \\ b(x+bW) & b(y-aW) \end{bmatrix} \begin{bmatrix} d \\ r \end{bmatrix}$ while it is *nonlinear* in *R*.

Asymptotic Properties

Reference tracking: output *y* follows reference *r* (error *e* goes to zero)

```
asymptotically.
```

In terms of Laplace transforms, $e(s) = H_S(s)r(s)$ is to be a stable rational function.

Disturbance attenuation:

effect of disturbance *d* on output *y* decreases asymptotically. In terms of Laplace transforms,

 $y(s) = SH_S(s)d(s)$ is to be a stable rational function.

This is to be achieved by a selection of the parameter W.

Plant Stabilizing controllers $S(s) = \frac{1}{s+1}$ $P(s) = \frac{1-(s+1)}{s+1}$

$$R(s) = \frac{1 - (s+1)W}{W}$$

for any stable rational $W \neq 0$. Achievable sensitivity transfer functions are $H_S = (s + 1)W$.

To track a step reference, r(s) = 1/s, we have e(s) = (s + 1)W/s, so we must take $W = sW_1$ for any stable rational $W_1 \neq 0$. To attenuate a sinusoidal disturbance, $d(s) = s/(s^2 + \omega^2)$, we constrain the parameter as $W = (s^2 + \omega^2)W_2$ for any stable rational $W_2 \neq 0$.

This demonstrates the internal model principle.

Pole Placement

Plant S = b/aStabilizing controller R = Y/X, where X = x + bW, Y = y - aW and ax + by = 1.

Let W = w/d, where d is a Hurwitz polynomial. Then dv = aw

$$R = \frac{dy - aw}{dx + bw} := \frac{q}{p}$$

Pole placement equation

$$ap+bq=d(ax+by)=d$$

The polynomial *d* specifies the closed-loop poles while *w* represents the remaining degrees of freedom.

Plant

$$S(s) = \frac{1}{s-1}$$

Stabilizing controllers
 $R(s) = \frac{1-(s-1)W}{W}$, $W \neq 0$ stable rational
Let the desired pole locations be given by $d(s) = s^2 + 2s + 1$.

Put W = w/d. Then $R(s) = \frac{(s^2 + 2s + 1) - (s - 1)w}{(s - 1)w}$

and for *R* to have order 1, take $w(s) = s + \omega$ for any real ω . Otherwise poles at $s = \infty$ as well.

W

Deadbeat Control

A discrete-time control problem.

Plant S = b/aFind a stabilizing controller R = Y/Xsuch that all four closed- loop transfer functions

are FIR (vanish in a finite/ shortest time). This occurs iff W is a *polynomial* in z^{-1} .

Special case of pole placement: all poles at z = 0. Shortest transient time iff

x, *y* is the least-degree solution pair of ax + by = 1.

Plant $S(z) = \frac{z^{-1}}{1 - z^{-1}}$

Stabilizing controllers $R(z) = \frac{1 - (1 - z^{-1})W}{1 + z^{-1}W}$

Then

$$\begin{split} H_S &= 1 - z^{-1} + z^{-1} (1 - z^{-1}) W, \quad SH_S = z^{-1} + z^{-2} W, \\ H_C &= z^{-1} - z^{-1} (1 - z^{-1}) W, \quad S^{-1} H_C = 1 - z^{-1} - (1 - z^{-1})^2 W \end{split}$$

are all polynomials in z^{-1} iff W is a polynomial in z^{-1} .

The shortest impulse responses are achieved for W = 0. The transients will vanish in one step.

H₂ Optimal Control

Plant S = b/aFind a stabilizing controller R = Y/Xsuch that, say, $H_C = b(y - aW)$ has a least H_2 norm.

Let $\alpha\beta$ be a polynomial defined by keeping the stable (in Res < 0) zeros of *ab* while replacing the unstable (in Res \geq 0) ones with their negative values.

In fact, α is the spectral factor of a(s)a(-s), β is that of b(s)b(-s). Then $ab/\alpha\beta$ is all-pass and

$$\left\|\boldsymbol{H}_{C}\right\|_{2} = \left\|\frac{\alpha\beta}{ab}\boldsymbol{H}_{C}\right\|_{2} = \left\|\frac{\alpha\beta}{a} - \alpha \boldsymbol{W}\beta\right\|_{2}$$

H₂ Optimal Control

Consider the decomposition

$$\frac{\alpha y\beta}{a}=r+\frac{q}{a}$$

with *r* polynomial and *q/a* strictly proper. With this decomposition,

$$\left\|\boldsymbol{H}_{C}\right\|_{2}^{2} = \left\|\frac{\boldsymbol{q}}{\boldsymbol{a}}\right\|_{2}^{2} + \left\|\boldsymbol{r} - \boldsymbol{\alpha}\boldsymbol{W}\boldsymbol{\beta}\right\|_{2}^{2}$$

because q/a and $r - \alpha W\beta$ are orthogonal

and thus the cross-terms contribute nothing to the norm.

The last expression is a complete square

whose first term is independent of *W*.

Hence the minimum is *unique* and achieved for $W = r/\alpha\beta$.

H₂ Optimal Control

The H_2 optimal control is a special case of pole placement. Indeed,

$$R = \frac{y - a \frac{r}{\alpha \beta}}{x + b \frac{r}{\alpha \beta}} = \frac{\alpha y \beta - ar}{\alpha x \beta + br} := \frac{q}{p}$$

and

 $ap + bq = a(\alpha x\beta + br) + b(\alpha y\beta - ar) = \alpha\beta(ax + by) = \alpha\beta$ The optimal closed-loop poles are given by $\alpha\beta$.

The pole placement equation has more than one solution. Which one is optimal? The one with q/a strictly proper. It is the solution pair p, q with q having a least degree.

Plant

$$S(s) = \frac{1}{s-1}$$

Stabilizing controllers

$$R(s) = \frac{1 - (s - 1)W}{W}, W \neq 0 \text{ stable rational}$$

The complementary sensitivity function to be minimized is

$$H_C(s) = 1 - (s - 1)W$$

Now $\alpha = s + 1$, $\beta = 1$

and the polynomial part of $\alpha y \beta / a = (s+1)/(s-1)$ is r = 1. Thus H_C attains minimum H_2 norm for $W = \frac{1}{s+1}$

and the corresponding optimal controller is R(s) = 2.

Alternatively, one can solve the Diophantine equation

$$(s-1)p+q=s+1$$

for the solution pair p, q such that q/(s-1) is strictly proper. This yields the least-degree solution pair with respect to q, namely p = 1, q = 2.

The optimal controller is R(s) = q/p = 2.

In general, it is simpler to solve the polynomial equation than performing calculations with rational functions.

l_1 Optimal Control

The H_2 norm minimization is appropriate for systems excited by finite energy signals.

When the exogenous signals persist,

a more relevant norm to measure system performance

is the L_1 norm (for continuous-time systems)

or the l_1 norm (for discrete-time systems).

The discrete-time case is much easier.

Plant S = b/aFind a stabilizing controller R = Y/Xsuch that, say, $H_S = a(x + bW)$ has a least l_1 norm.

l_1 Optimal Control

The optimal sensitivity function $H_S = a(x + bW)$ is not unique but it has a FIR property.

Perform stable-unstable factorizations $a = a^+a^-$ and $b = b^+b^-$, where a^- and b^- absorb all the zeros of a and b, respectively, in the open unit disc $|z^{-1}| < 1$.

Then H_S is a polynomial in z^{-1} iff W has the form

$$W=\frac{w}{a^+b^+},$$

where w is a free polynomial.

Indeed, $H_S = ax + a^-b^-w$ and the l_1 -norm minimization of H_S is equivalent to a finite linear program for the coefficients of w.

Plant $S(z) = z^{-1} \frac{z^{-1} - 1.5}{(1 - z^{-1})^2}$

Equation

$$(1-z^{-1})^2 x + z^{-1}(z^{-1}-1.5)y = 1$$

A solution $x = 1 - 0.5z^{-1}$, $y = -3 + 2z^{-1}$ yields the set of stabilizing controllers

$$R(z) = \frac{-3 + 2z^{-1} - (1 - 2z^{-1})^2 W}{1 - 0.5z^{-1} + z^{-1}(z^{-1} - 1.5)W}$$

for any proper and stable rational parameter W.

The set of achievable sensitivity functions is

$$H_{s}(z^{-1}) = (1 - 2z^{-1})^{2}(1 - 0.5z^{-1}) + z^{-1}(1 - 2z^{-1})^{2}(z^{-1} - 1.5)W$$

and those which are *polynomials* in *z*⁻¹ are

$$H_{S}(z^{-1}) = (1-2z^{-1})^{2}(1-0.5z^{-1}) + z^{-1}(1-2z^{-1})^{2}w$$

where *w* is the numerator polynomial in z^{-1} of

$$W=\frac{w}{z^{-1}-1.5}$$

An upper bound for the degree of *w* is 2. The linear program:

minimize $t = r_1 + r_2 + r_3 + r_4 + r_5$ subject to $-r_i \le h_i \le r_i$ and $r_i \ge 0$, i = 1, 2, ..., 5

where

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_5 \end{bmatrix} = \begin{bmatrix} -4.5 \\ 6 \\ -2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 4 & -4 & 1 \\ 0 & 4 & -4 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

then returns $w_0 = 1.5$, $w_1 = 0$, $w_2 = 0$ so that $W = \frac{1.5}{z^{-1} - 1.5}$

The optimal controller is

$$R(z) = \frac{3 - 4z^{-1}}{(1 + z^{-1})(z^{-1} - 1.5)},$$

the corresponding optimal sensitivity function is

$$H_{s}(z) = 1 - 3z^{-1} + 4z^{-2}.$$

It is to be noted that R is *not* a deadbeat controller because SH_S is not a polynomial. Indeed, only polynomial parameters Wresult in deadbeat controllers.

H_{∞} Optimal Control

The H_{∞} norm measures the transfer of energy through the system.

Plant S = b/aFind a stabilizing controller R = Y/Xsuch that, say, $SH_S = b(x + bW)$ has a least H_{∞} norm.

This is a disturbance attenuation problem for $d \in L_2$ (continuous time) or $d \in l_2$ (discrete time).

The discrete-time case has a lot cleaner solution than the continuous-time one.

H_{∞} Optimal Control

The set of proper and stable real rational functions equipped with inner product

$$\langle a,b\rangle = \frac{1}{2\pi j} \oint_{\mathcal{C}} a(z^{-1})b(z)dz$$

where C is the unit circle oriented counterclockwise, forms a linear space denoted by H_2 .

The problem of minimizing

$$\left\|SH_{S}\right\|_{\infty}=\left\|f-gh\right\|_{\infty}$$

where f := bx, $g := -b^-b^-$, $h := b^+b^+W$ is to find the closest point to f in the subspace gH_2 , where the distances are measured using the H_{∞} norm.

H_{∞} Optimal Control

Associated with each proper and stable rational function F is a linear operator on H_2 denoted by T_F .

Let *N* denote the orthogonal complement of T_g in H_2 and let Π denote the orthogonal projection mapping H_2 onto *N*. Then ΠT_{f-gh} is the same for all *h* and in fact equals ΠT_f . Thus, $\min_h \|f - gh\|_{\infty} = \|\Pi T_f\|.$

If h_{∞} attains this minimum and $q \in N$ is a function such that $\|\Pi T_f q\|_2 = \|\Pi T_f\| \|q\|_2$ then the optimal sensitivity is

$$(f-gh_{\infty})(z) = (\Pi T_f q)(z) / q(z).$$

Plant $S(z) = z^{-1} \frac{z^{-1} - 2}{1 - z^{-1}}$

Equation

$$(1-z^{-1})x+z^{-1}(z^{-1}-2)y=1$$

A solution $x = 1 - z^{-1}, y = 1$

yields the set of stabilizing controllers

$$R(z) = \frac{-1 - (1 - z^{-1})W}{1 - z^{-1} + z^{-1}(z^{-1} - 2)W}$$

for any proper and stable rational parameter W.

The task is to minimize the H_{∞} norm of

$$SH_{S}(z) = z^{-1}(z^{-1}-2)(1-z^{-1}) + z^{-2}(z^{-1}-2)^{2}W$$

Thus

$$f \coloneqq z^{-1}(z^{-1}-2)(1-z^{-1}), \ g \coloneqq -z^{-2}, \ h \coloneqq (z^{-1}-2)^2 W$$

Since g has two zeros, the subspace N has dimension 2 and an orthonormal basis for N is given by 1, z^{-1} . The matrix representation A of ΠT_f with respect to this basis is $A = \begin{bmatrix} 0 & 0 \\ -2 & 0 \end{bmatrix}$

Now $\|\Pi T_f\| = \overline{\sigma}(A)$, the largest singular value of A, and q(z), $(\Pi T_f q)(z)$ are respectively given, with respect to the basis of N, by p, Ap, where p is the eigenvector of $A^T A$ corresponding to $\overline{\sigma}^2(A)$. In this case, $\overline{\sigma}(A) = 2$ and q(z) = 1, $(\Pi T_f q)(z) = -2z^{-1}$. It follows that the optimal disturbance-to-output transfer function is $SH_S(z) = -2z^{-1}$

the optimal parameter $W_{\infty}(z) = \frac{0.5z^{-1} - 1.75}{(z^{-1} - 1.5)^2}$

and the corresponding optimal controller

$$R_{\infty}(z) = \frac{0.5}{z^{-1}-2}$$

Robust Stabilization

The notion of robust stability

addresses stabilization of plants subject to modeling errors, when the actual plant may differ from the nominal model, using a *fixed* controller.

The ultimate goal is to stabilize the actual plant. The actual plant is unknown, however, so the best one can do is to stabilize a large enough set of plants.

The set of plants is constructed as a neighborhood of the nominal plant. The size of the neighborhood is measured by a suitable norm, most common being the H_{∞} norm.

Model of Uncertainty

Consider a nominal plant with transfer function *S* and its neighborhood S_{Δ} defined by $S_{\Delta} := (1 + \Delta F)S$, where *F* is a *fixed* stable rational function and Δ is a *variable* stable rational function such that $\|\Delta\|_{\infty} \le 1$. Note that ΔF is the normalized plant perturbation away from 1

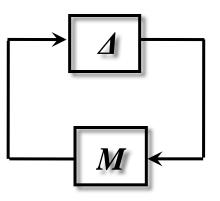
$$\frac{S_{\Delta}}{S} - 1 = \Delta F$$

Hence if $\|\Delta\|_{\infty} \le 1$, then for all frequencies ω
$$\left|\frac{S_{\Delta}(j\omega)}{S(j\omega)} - 1\right| \le |F(j\omega)|$$

so $|F(j\omega)|$ provides the uncertainty profile while Δ accounts for phase uncertainty.

Small Gain Theorem

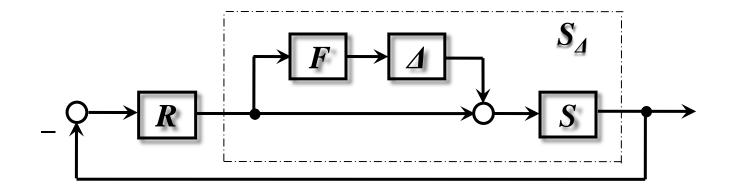
Consider the *M*-*∆* **feedback system:**



Suppose that *M* is stable. Then the feedback system is stable for all stable Δ with $\|\Delta\|_{\infty} \leq 1$ if and only if $\|M\|_{\infty} < 1$.

Robust Stability Condition

The given model of uncertainty



collapses to an M- Δ feedback system with

$$M = -F \frac{SR}{1 + SR}$$

Suppose that *R* stabilizes the nominal plant *S*. Then *R* will stabilize the entire family of plants S_{Δ} iff

$$\left\|FH_{C}\right\|_{\infty} < 1$$

Parameterized Condition

The set of all stabilizing controllers for S = b/a is described by the formula

$$R = -\frac{y - aW}{x + bW}$$

where *ax* + *by* = 1 and *W* is a free stable rational parameter. The robust stability condition then reads

$$\left\|Fb\left(y-aW\right)\right\|_{\infty}<1$$

Any stable rational *W* that satisfies this inequality then defines a robustly stabilizing controller *R* for *S*. In case *W* actually minimizes the norm one obtains the best robustly stabilizing controller.

Plant

$$S_{\tau}(s) = \frac{s+1}{s-1}e^{-\tau s}$$

where the time delay τ is known only to the extent that it lies in the interval $0 \le \tau \le 0.2$.

Find a controller that stabilizes the uncertain plant S_{τ} .

The time-delay factor can be treated as a multiplicative perturbation of the nominal plant

$$S(s) = \frac{s+1}{s-1}$$

by embedding S_{τ} in the family $S_{\Delta} := (1 + \Delta F)S$, where Δ ranges over the set of stable rational functions such that $||\Delta||_{\infty} \le 1$.

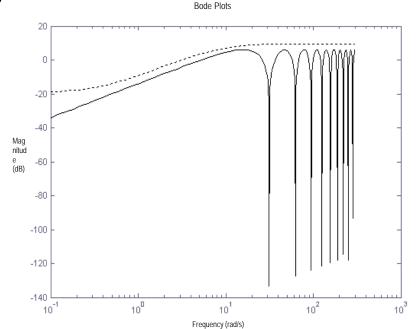
To do this, F should be chosen so that

$$\frac{S_{\Delta}(j\omega)}{S(j\omega)} - 1 = \left| e^{-j\omega\tau} - 1 \right| \le \left| F(j\omega) \right|$$

A suitable uncertainty profile is

$$F(s) = \frac{3s+1}{s+9}$$

Bode magnitude plot of this *F* and of $e^{j\omega\tau}-1$ for $\tau=0.2$, the worst value



The set of all stabilizing controllers for the nominal plant *S* is

$$R(s) = \frac{\frac{1}{2} - (s - 1)W}{-\frac{1}{2} + (s + 1)W}$$

where $W \neq 1/2(s + 1)$ is any stable rational parameter.

The robust stability condition reads

$$|P-QW|_{\infty} < 1$$

where

$$P(s) = \frac{1}{2}(s+1)\frac{3s+1}{s+9}, \ Q(s) = (s-1)(s+1)\frac{3s+1}{s+9}$$

The maximum modulus theorem implies that the minimum of the H_{∞} norm taken over all stable rational functions *W* equals 0.4 and is achieved for

$$W(s) = \frac{P(s) - P(1)}{Q(s)} = \frac{1}{10} \frac{15s + 31}{(s+1)(3s+1)}$$

Thus the robust stability condition is satisfied and the best robustly stabilizing controller is

$$R(s) = \frac{2}{13} \frac{s+9}{s+1}$$

Stabilization Subject to Input Constraints

Most plants have inputs that are subject to hard limits on the range of variations that can be achieved.

Stabilization subject to input constraints:

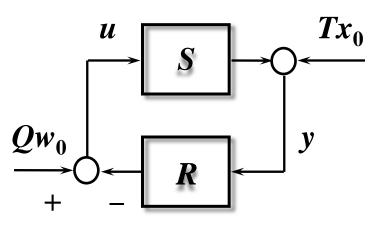
* local stabilization,

saturation prevented for a set of initial states, the control system behaves as a linear one

global stabilization,
 saturation occurs, the control system is nonlinear

Problem Formulation

Discrete-time control system



Find

a controller R such that

the control system is *locally asymptotically stable* for any initial state $x_0 \in P_F$

$$P_F = \{ x: Fx \le f \} \quad \text{polyhedron}$$

and $u(z) = u_0 + u_1 z^{-1} + u_2 z^{-2} + \dots$
 $-u^- \le u_k \le u^+ \quad \text{constraint}$

Controller Parameterization

Stabilizing controllers R = Y/X

$$X = x + bW, \quad Y = y - aW$$

Control sequence ($w_0 = 0$ assumed)

$$u = -c (y - aW) x_0, \quad W = p_0 + p_1 z^{-1} + \dots$$

is a linear function of the parameters p_0, p_1, \dots of the form

$$u_k = G_k(p_0, p_1, \ldots), k = 0, 1, \ldots$$

and it satisfies the constraint if x_0 is in $P_G = \{ x: G(p_0, p_1, ...) x \le g \}$ where

$$G(p_0, p_1, \dots) = \begin{vmatrix} G_0(p_0, p_1, \dots) \\ -G_0(p_0, p_1, \dots) \\ G_1(p_0, p_1, \dots) \\ -G_1(p_0, p_1, \dots) \\ \vdots \end{vmatrix}, \qquad g = \begin{vmatrix} u^+ \\ u^- \\ u^+ \\ u^- \\ \vdots \end{vmatrix}$$

Polyhedron Inclusion

Now x_0 is in P_F , so P_F must be contained in P_G .

Farkas lemma:

A polyhedron $P_F = \{x: Fx \leq f\}$ is contained in a polyhedron $P_G = \{x: Gx \leq g\}$ if and only if there exists a matrix Pwith non-negative entries such that

$$PF = G, Pf \leq g$$

Solution

The problem has a solution

if and only if there exist a matrix P with non-negative entries and real numbers p_0, p_1, \ldots such that

$$PF = G(p_0, p_1, \ldots), Pf \leq g$$

This is a *linear program* for P and $p_0, p_1, ...$

The stabilizing controller is then obtained by putting

$$W = p_0 + p_1 z^{-1} + \dots$$

The program has a finite dimension if W is approximated by a polynomial.

Consider a plant described by input-output and state-output transfer functions of the form

$$S(z) = \frac{z^{-1}}{1 - z^{-1}}, \ T(z) = \frac{2}{1 - z^{-1}}$$

The corresponding state equation

$$x_{k+1} = x_k + 0.5u_k, \ y_k = 2x_k$$

The plant input is constrained as

$$-1 \le u_k \le 1, \ k = 0,1,\dots$$

and the initial state x_0 belongs to the polyhedron

$$P_F:\begin{bmatrix}1\\-1\end{bmatrix}x_0\leq\begin{bmatrix}\frac{1}{3}\\\frac{1}{3}\end{bmatrix}\quad (\text{or }|x_0|\leq 1/3).$$

Stabilizing controllers

$$R(z) = \frac{2 - (1 - 2z^{-1})W}{1 + z^{-1}W}$$

for a free, proper stable rational parameter *W*. The corresponding control sequence is

$$u(z) = \left[-4 + 2(1 - 2z^{-1})W\right]x_0$$

Now start with W = 0 and check whether the resulting linear program for P is feasible:

$$P\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}-4\\4\end{bmatrix}, \quad P\begin{bmatrix}\frac{1}{3}\\\frac{1}{3}\end{bmatrix} \le \begin{bmatrix}1\\1\end{bmatrix}$$

It is not, hence no controller of order 0 stabilizes the plant.

Proceed by choosing $W = p_0$ and check whether the resulting linear program for p_0 and P is feasible:

$$P\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}-4+2p_{0}\\4-2p_{0}\\-4p_{0}\\4p_{0}\end{bmatrix}, P\begin{bmatrix}\frac{1}{3}\\\frac{1}{3}\end{bmatrix} \le \begin{bmatrix}1\\1\\1\\1\\1\end{bmatrix}$$

It is, and the solution

$$p_0 = \frac{2}{3}, \quad P = \begin{bmatrix} 0 & 0 \\ 8 & 0 \\ 0 & 8 \\ 8 & 0 \end{bmatrix}$$

 $\begin{bmatrix} 0 & 8 \end{bmatrix}$

furnishes a stabilizing controller

$$R(z) = \frac{4 + 4z^{-1}}{3 + 2z^{-1}}$$

The actual polyhedron of stabilizable initial states is

$$P_{G}: \frac{1}{3} \begin{bmatrix} -8\\8\\-8\\8 \end{bmatrix} x_{0} \leq \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \qquad (\text{or } |x_{0}| \leq 3/8)$$

and it includes P_F as a proper subset.

Note that the closed-loop control system features the finite impulse response property.

Selecting a polynomial parameter *W* implies that the closed-loop poles are all at the origin.

Input and Output Shaping

Input constraints, but also output overshoot or undershoot In discrete time, easy to handle. The *z*-transform provides a simple direct relationship

 $(y_0, y_1, y_2, ...) \leftrightarrow y_0 + y_1 z^{-1} + y_2 z^{-2} + ...$

Time domain constraints boil down to constraints on polynomial coefficients.

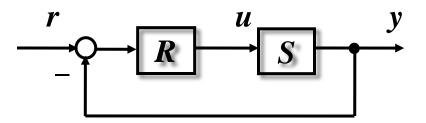
In continuous time, a new approach is needed:

* assign distinct negative real poles (rather than poles at z = 0)

 express time signals as polynomials in the corresponding exponential modes

Problem Formulation

Given a plant S = b/a, we are seeking a stabilizing controller R = q/psuch that the output *y* asymptotically follows a reference *r*



while the time-domain constraints $u_{\min} \le u(t) \le u_{\max}$, $y_{\min} \le y(t) \le y_{\max}$ are satisfied for all $t \ge 0$, where u_{\min} , u_{\max} , y_{\min} , and y_{\max} are given real numbers. We assume that *S* is strictly proper and that *R* is proper so as to avoid impulsive modes.

Pole Assignment

Assign distinct negative *integer* poles

$$ap+bq=d := \prod_i (s-s_i)$$

Then signals are sums of decaying exponentials modes

$$u(t) = \sum_{i} u_{i} e^{-s_{i}t}, \quad y(t) = \sum_{i} y_{i} e^{-s_{i}t}$$

Let g be the greatest common divisor of the poles s_i so that $s_i = k_i g$ for some integers k_i . The signals can now be expressed as polynomials in $\lambda = e^{-gt}$

$$u(\lambda) = \sum_{i} u_{i} \lambda^{k_{i}}, \quad y(\lambda) = \sum_{i} y_{i} \lambda^{k_{i}}$$

Polynomial Non-Negativity Constraints

When time *t* increases from 0 to ∞ ,

indeterminate λ decreases from 1 to 0

and the time constraints become the polynomial constraints

 $u_{\min} \le u(\lambda) \le u_{\max}, y_{\min} \le y(\lambda) \le y_{\max}$

or, equivalently, the polynomial non-negativity constraints

$$u(\lambda)-u_{\min} \ge 0, \quad -u(\lambda)+u_{\max} \ge 0,$$

 $y(\lambda)-y_{\min} \ge 0, \quad -y(\lambda)+y_{\max} \ge 0,$

along the interval $\lambda \in [0, 1]$.

Convex LMI Constraint

A polynomial non-negativity constraint

$$p(\lambda) = \sum_{i=0}^{n} p_i \lambda^i \ge 0, \text{ for all } \lambda \square [\lambda_{\min}, \lambda_{\max}]$$

is equivalent to the existence of real symmetric matrices P_{\min} , P_{\max} of size n + 1satisfying the linear matrix inequality constraints

$$p_{i} = \text{trace} [P_{\min}(H_{i-1} - \lambda_{\min} H_{i}) + P_{\max}(\lambda_{\max} H_{i} - H_{i-1})], \ i = 0, 1, ..., n$$
$$P_{\min} \ge 0, \quad P_{\max} \ge 0$$

where H_i is the basis Hankel matrix with ones along the (i + 1)th anti-diagonal and zeros elsewhere.

Design Parameters

Now all proper rational controllers *R* that assign the pole polynomial $d := \prod_i (s - s_i)$ are parameterized by a numerator polynomial *w* of appropriate degree.

The coefficients of *w* are our design parameters and they appear in the coefficients u_i , y_i of the closed-loop signals in an affine manner.

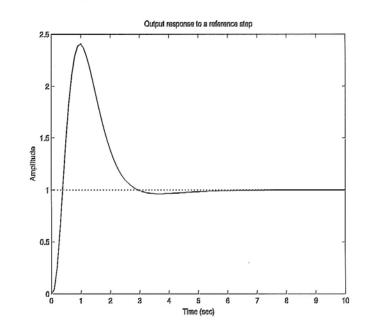
Therefore the linear matrix inequalities are convex in the design parameters.

Given the plant $S(s) = \frac{s+0.5}{s(s-2)}$

the stabilizing controller

$$R(s) = \frac{384s + 240}{s^3 + 17s^2 + 119s + 79}$$

assigns the closed-loop poles at -1, -2, -3, -4, -5while ensuring asymptotic step reference tracking.



Despite the poles being negative real, the step response features an unacceptable overshoot of 140 % due to system zeros.

The set of all proper rational controllers that assign the above poles is given by

$$R(s) = \frac{384s + 240 - s(s - 2)w}{s^3 + 17s^2 + 119s + 79 + (s + 0.5)w}$$

where $w = w_0 + w_1 s$ is a free polynomial of degree at most 1.

The closed-loop responses to a step input are affine in *w*,

$$y(s) = \frac{384s^2 + 432s + 120 - (s^3 - 1.5s^2 - s)w}{(s+1)(s+2)(s+3)(s+4)(s+5)}$$

and correspond to a sum of decaying exponential modes in the time domain,

$$\mathbf{y}(t) = \sum_{i=0}^5 \mathbf{y}_i e^{-it}$$

or to a polynomial

$$y(\lambda) = \sum_{i=0}^{5} y_i \lambda^i$$

in the indeterminate $\lambda = e^{-t}$.

The coefficients y_i are *linear* functions of w_0 and w_1 .

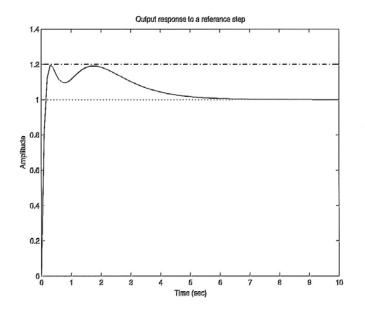
Suppose the desired maximum overshoot is 20%

 $y(t) \le 1.2 y_0$

equivalent to the polynomial non-negativity constraint

$$p(\lambda) = 1.2y_0 - y(\lambda) = 0.2y_0 - y_1\lambda - y_2\lambda^2 - y_3\lambda^3 - y_4\lambda^4 - y_5\lambda^5 \ge 0$$

and in turn equivalent to an LMI in w_0 and w_1 . The LMI returns w(s) = -100.36 - 12.27skeeping the controller of order 3.



Fixed-Order Stabilizing Controllers

A weakness of the sequential design based on the Youla-Kučera parameterization is that each performance specification beyond stability may *increase the order* of the controller.

Actually, fixed-order stabilizing controllers can be found by solving an LMI.

Polynomial Degree Control

The degree control in the parameter W = w/d is difficult.

If *d* is fixed, all closed-loop transfer functions are affine in *w* but the order of *w* increases with each additional specification. If *d* is not fixed, we have a greater flexibility but we run into difficulties as the set of stable polynomials is not convex in the space of coefficients.

The difficulty was resolved by providing a *convex inner approximation* of the non-convex stability domain in the space of polynomial coefficients. This approximation is parameterized by a given polynomial, referred to as the *central* polynomial.

Problem Formulation

Let us now show how to design stabilizing controllers of a fixed (presumably low) order.

Suppose a plant S = b/a is given and suppose that we have a stabilizing controller $\overline{R} = q/p$. We seek to find a stabilizing controller R = y/xof a given order *m*, if such a controller exists.

The Two Controllers Relationship

The two stabilizing controllers are related as

$$p = x + bW$$
, $q = y - aW$, where $W = w/d$.

Then

$$\begin{bmatrix} d & 0 & -p & b \\ 0 & d & -q & -a \end{bmatrix} \begin{bmatrix} x \\ y \\ d \\ w \end{bmatrix} = 0.$$

Minimal Polynomial Basis

Let
$$\begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \\ d_1 & d_2 \\ w_1 & w_2 \end{bmatrix}$$

be a minimal polynomial basis of A. Then all stabilizing controllers for S are

$$\boldsymbol{R} = (\lambda_1 \boldsymbol{y}_1 + \lambda_2 \boldsymbol{y}_2) / (\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2)$$

where λ_1 and λ_2 are polynomials such that $\lambda_1 d_1 + \lambda_2 d_2$ is a *stable* polynomial.

A stabilizing controller of order *m* exists if

$$\operatorname{deg}\begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = m$$

Alas, the set of *stable* polynomials is not convex.

Linear Matrix Inequality

Given a fixed stable "central" polynomial c(s) of degree n, polynomial d(s) of degree n is stable if there exists a real symmetric matrix Q of size nsolving the linear matrix inequality

$$H_{c}(d,Q) = c^{T}d + d^{T}c - \varepsilon c^{T}c + \Pi_{1}^{T}Q\Pi_{2} + \Pi_{2}^{T}Q\Pi_{1} \ge 0$$

where
$$\Pi_1 = \begin{bmatrix} 1 & 0 \\ & \ddots & \vdots \\ & & 1 & 0 \end{bmatrix}, \quad \Pi_2 = \begin{bmatrix} 0 & 1 & \\ \vdots & & \ddots & \vdots \\ 0 & & & 1 \end{bmatrix}$$

are projection matrices, *c* and *d* are the coefficient vectors of c(s) and d(s), and ε is an arbitrarily small positive scalar.

Convex Inner Approximation

The interpretation of this result is as follows: as soon as polynomial *c* is fixed, we obtain a sufficient linear matrix inequality condition for stability of polynomial *d*.

Therefore, $H_c = \{d : \exists Q : H_c(d,Q) \ge 0\}$

is a convex inner approximation of the (generally non-convex) stability domain in the space of polynomial coefficients around the central stable polynomial.

Problem Solution

Using the convex inner approximation of the set of stable polynomials,

we can optimize over polynomials λ_1 and λ_2 to enforce low degrees of *x* and *y* (linear algebraic constraint)

$$\operatorname{deg}\begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = m$$

as well as stability of *d* (linear matrix inequality constraint)

$$\begin{bmatrix} d_1 & d_2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = d$$

Consider a plant of order 3,

$$S(s) = \frac{1}{s(s^2 + s + 10)}.$$

A stabilizing controller of order 2 can be found by placing the closed-loop poles at arbitrary locations. For example, the controller

$$\overline{R}(s) = \frac{-26s^2 + 45s + 1}{s^2 + 4s - 4}$$

places all five closed-loop poles at -1.

Find a lower order stabilizing controller.

A minimal polynomial basis for the polynomial matrix A is

$$\begin{bmatrix} 0 & 1 \\ -1 & -26 \\ -1 & s^3 + s^2 + 10s - 26 \\ s^2 + 4s - 4 & 149s - 103 \end{bmatrix}$$

All the stabilizing controllers can be recovered from the polynomials λ_1 and λ_2 such that the pole polynomial

$$d = -\lambda_1 + \lambda_2(s^3 + s^2 + 10s - 26)$$

is stable.

From the first two rows of the basis a controller of order 0 can be obtained by restricting the parameters λ_1 and λ_2 to be constant.

Hurwitz stability criterion then reveals that *d* is stable if and only if $\lambda_1 \in (-36, -26)$ and $\lambda_2 = 1$.

For example, with $\lambda_1 = -30$ we obtain the controller R(s) = 4and the closed-loop pole polynomial $d(s) = s^3 + s^2 + 10s + 4$.

In this example, we were able to obtain an exact solution. In general, the linear matrix inequality has to be used.

Summary

The benefits of representing stabilizing controllers by a single parameter

- easy accommodation of additional design specifications by selecting an appropriate parameter
- * all transfer functions in a stabilized system are *linear* in the parameter (while they are nonlinear in the controller)
- * the parameter belongs to a smaller set of *stable* rational functions (while the controller is any rational)

References

- Kučera, V. (1975). Stability of discrete linear feedback systems. In *Preprints of the 6th IFAC World Congress*, vol. 1. Paper 44.1, Boston, 1975.
- Youla, D.C., J.J. Bongiorno, and H.A.Jabr (1976). Modern Wiener-Hopf design of optimal controllers: The single-input case. *IEEE Transactions on Automatic Control*, 21, 3-14.
- Kučera, V. (1979). *Discrete Linear Control: The Polynomial Equation Approach*. Wiley: Chichester.
- Kučera, V. (1993). Diophantine equations in control a survey. *Automatica*, 29, 1361-1375.
- Anderson, B.D.O. (1998). From Youla-Kucera to identification, adaptive and nonlinear control. *Automatica*, 34, 1485-1506.

Kučera, V. (2007). Polynomial control: past, present, and future. International Journal of Robust and Nonlinear Control, 17, 682-705.

References

Henrion, D., S. Tarbouriech, and V. Kučera (2001).Control of linear systems subject to input constraints: a polynomial approach. *Automatica*, 37, 597-604.

Henrion, D., M. Šebek, and V. Kučera (2003). Positive polynomials and robust stabilization with fixed-order controllers. *IEEE Trans. Automatic Control*, 48, 1178-1186.

Henrion, D., V. Kučera, and A. Molina (2005). Optimizing simultaneously over the numerator and denominator polynomials in the Youla-Kučera parametrization. *IEEE Trans. Automatic Control*, 50, 1369-1374.

Henrion, D., S. Tarbouriech, and V. Kučera (2005). Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs. *IEEE Trans. Automatic Control*, 50, 1360-1364.